An empirical test of the temperature dependence of carrying capacity

Author:

Bernhardt Joey R.ORCID,Sunday Jennifer M.,O’Connor Mary I.

Abstract

AbstractPredicting population persistence and dynamics in the context of global change is a major challenge for ecology. A widely held prediction is that population abundance at carrying capacity decreases with warming, assuming no change in resource supply, due to increased individual resource demands associated with higher metabolic rates. However, this prediction, which is based on metabolic scaling theory (MST), has not been tested empirically. Here we experimentally tested whether effects of temperature on short-term metabolic performance (rates of photosynthesis and respiration) translate directly to effects of temperature on population rates in a phytoplankton species. We found that effects of temperature on organismal metabolic rates matched theoretical predictions, and that the temperature dependence of individual metabolic performance translated to population abundance. Population abundance at carrying capacity, K, decreased with temperature less than expected based on the temperature dependence of photosynthesis. Concurrent with declines in abundance, we observed a linear decline in cell size of approximately 2.3% °C−1, which is consistent with broadly observed patterns in unicellular organisms, known as the temperature-size rule. When theoretical predictions include higher densities allowed by shifts toward smaller individual size, observed declines in K were quantitatively consistent with theoretical predictions. Our results indicate that outcomes of population dynamics across a range of temperatures reflect organismal responses to temperature via metabolic scaling, providing a general basis for forecasting population responses to global change.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3