ΔN-Tp63 mediates Wnt/β-catenin-induced inhibition of differentiation in basal stem cells of mucociliary epithelia

Author:

Haas Maximilian,Vázquez José Luis Gómez,Sun Dingyuan Iris,Tran Hong Thi,Brislinger Magdalena,Tasca Alexia,Shomroni Orr,Vleminckx Kris,Walentek PeterORCID

Abstract

SummaryMucociliary epithelia provide a first line of defense against pathogens in the airways and the epidermis of vertebrate larvae. Impaired regeneration and remodeling of mucociliary epithelia are associated with dysregulated Wnt/β-catenin signaling in chronic airway diseases, but underlying mechanisms remain elusive and studies of Wnt signaling in mucociliary cells yield seemingly contradicting results. Employing the Xenopus mucociliary epidermis, the mouse airway, and human airway basal stem cell cultures, we characterize the evolutionarily conserved roles of Wnt/β-catenin signaling in mucociliary cells in vertebrates. Wnt signaling is required in multiciliated cells for cilia formation during differentiation stages, but in Basal cells, Wnt signaling prevents specification and differentiation of epithelial cell types by activating ΔN-TP63 expression. We demonstrate that ΔN-TP63 is a master transcription factor in Basal cells, which is necessary and sufficient to mediate the Wnt-induced inhibition of differentiation and is required to retain basal stem cells during development. Chronic stimulation of Wnt signaling leads to mucociliary remodeling and Basal cell hyperplasia, but this is reversible in vivo and in vitro, suggesting Wnt inhibition as an option in the treatment of chronic lung diseases. Our work sheds light into the evolutionarily conserved regulation of stem cells and differentiation, resolves Wnt functions in mucociliary epithelia, and provides crucial insights into mucociliary development, regeneration and disease mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3