Pan-genomic and Polymorphic Driven Prediction of Antibiotic Resistance in Elizabethkingia

Author:

Naidenov BryanORCID,Willyerd Karyn,Lim AlexanderORCID,Torres Nathanial J,Johnson William L.,Hwang Hong Jin,Hoyt Peter,Gustafson John,Chen CharlesORCID

Abstract

AbstractThe Elizabethkingia are a genetically diverse genus of emerging pathogens that exhibit multidrug resistance to a range of common antibiotics. Two representative species, Elizabethkingia bruuniana and Elizabethkingia meningoseptica, were phenotypically tested to determine minimum inhibitory concentrations for five antibiotics. Ultra-long read sequencing with Oxford Nanopore Technologies and subsequent de novo assembly produced complete, gapless circular genomes for each strain. Alignment based annotation with Prokka identified 5,480 features in E. bruuniana and 5,203 features in E. meningoseptica, where none of these identified genes or gene combinations corresponded to observed phenotypic resistance values. Pan-genomic analysis, performed with an additional 19 Elizabethkingia strains, identified a core-genome size of 2,658,537 bp, 32 uniquely identifiable intrinsic chromosomal antibiotic resistance core-genes and 77 antibiotic resistance pan-genes. Using core-SNPs and pan-genes in combination with six machine learning algorithms, binary classification of clindamycin and vancomycin resistance achieved f1 scores of 0.94 and 0.84 respectively. Performance on the more challenging multiclass problem for fusidic acid, rifampin and ciprofloxacin resulted in f1 scores of 0.70, 0.75 and 0.54 respectively.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

1. An Empirical Comparison of Machine Learning Models for Time Series Forecasting;Econometric Reviews,2010

2. Determination of minimum inhibitory concentrations;J Antimicrob Chemother,2001

3. Support vector machine prediction of HIV-1 drug resistance using the viral nucleotide patterns;Transactions of the Royal Society of South Africa,2009

4. Clustering high dimensional data;Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery,2012

5. The RAST Server: Rapid Annotations using Subsystems Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3