A computational model of loss of dopaminergic cells in Parkinson’s disease due to glutamate-induced excitotoxicity

Author:

Muddapu Vignayanandam R.ORCID,Mandali AlekhyaORCID,Chakravarthy Srinivasa V.ORCID,Ramaswamy SrikanthORCID

Abstract

AbstractParkinson’s disease (PD) is a neurodegenerative disease associated with progressive and inexorable loss of dopaminergic cells in Substantia Nigra pars compacta (SNc). A full understanding of the underlying pathogenesis of this cell loss is unavailable, though a number of mechanisms have been indicated in the literature. A couple of these mechanisms, however, show potential for the development of radical and promising PD therapeutics. One of these mechanisms is the peculiar metabolic vulnerability of SNc cells by virtue of their excessive energy demands; the other is the excitotoxicity caused by excessive glutamate release onto SNc by an overactive Subthalamic Nucleus (STN). To investigate the latter hypothesis computationally, we developed a spiking neuron network model of the SNc-STN-GPe system. In the model, prolonged stimulation of SNc cells by an overactive STN leads to an increase in a ‘stress’ variable; when the stress in a SNc neuron exceeds a stress threshold the neuron dies. The model shows that the interaction between SNc and STN involves a positive feedback due to which, an initial loss of SNc cells that crosses a threshold causes a runaway effect that leads to an inexorable loss of SNc cells, strongly resembling the process of neurodegeneration. The model further suggests a link between the two aforementioned PD mechanisms: metabolic vulnerability and glutamate excitotoxicity. Our simulation results show that the excitotoxic cause of SNc cell loss in PD might be initiated by weak excitotoxicity mediated by energy deficit, followed by strong excitotoxicity, mediated by a disinhibited STN. A variety of conventional therapies are simulated in the model to test their efficacy in slowing down or arresting SNc cell loss. Among the current therapeutics, glutamate inhibition, dopamine restoration, subthalamotomy and deep brain stimulation showed superior neuroprotective effects in the proposed model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3