Meiotic MCM proteins promote and inhibit crossovers during meiotic recombination

Author:

Hartmann Michaelyn,Kohl Kathryn P.,Sekelsky Jeff,Hatkevich TaliaORCID

Abstract

AbstractCrossover formation as a result of meiotic recombination is vital for proper segregation of homologous chromosomes at the end of meiosis I. In many organisms, crossovers are generated through two crossover pathways: Class I and Class II. To ensure accurate crossover formation, meiosis-specific protein complexes regulate the degree in which each pathway is used. One such complex is the mei-MCM complex, which contains MCM (mini-chromosome maintenance) and MCM-like proteins REC (ortholog of Mcm8), MEI-217, and MEI-218, collectively called the mei-MCM complex. The mei-MCM complex genetically promotes Class I crossovers and inhibits Class II crossovers in Drosophila, but it is unclear how individual mei-MCM proteins contribute to crossover regulation. In this study, we perform genetic analyses to understand how specific regions and motifs of mei-MCM proteins contribute to Class I and II crossover formation and distribution. Our analyses show that the long, disordered N-terminus of MEI-218 is dispensable for crossover formation, and that mutations that disrupt REC’s Walker A and B motifs differentially affect Class I and Class II crossover formation. In Rec Walker A mutants, Class I crossovers exhibit no change, but Class II crossovers are increased. However, in rec Walker B mutants, Class I crossovers are severely impaired, and Class II crossovers are increased. These results suggest that REC may form multiple complexes that exhibit differential REC-dependent ATP binding and hydrolyzing requirements. These results provide genetic insight into the mechanisms through which mei-MCM proteins promote Class I crossovers and inhibit Class II crossovers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3