De novo assembly of a young Drosophila Y chromosome using Single-Molecule sequencing and Chromatin Conformation capture

Author:

Mahajan Shivani,Wei Kevin,Nalley Matthew,Giblisco Lauren,Bachtrog Doris

Abstract

While short-read sequencing technology has resulted in a sharp increase in the number of species with genome assemblies, these assemblies are typically highly fragmented. Repeats pose the largest challenge for reference genome assembly, and pericentromeric regions and the repeat-rich Y chromosome are typically ignored from sequencing projects. Here, we assemble the genome of Drosophila miranda using long reads for contig formation, chromatin interaction maps for scaffolding and short reads, optical mapping and BAC clone sequencing for consensus validation. Our assembly recovers entire chromosomes and contains large fractions of repetitive DNA, including ~41.5 Mb of pericentromeric and telomeric regions, and >100Mb of the recently formed highly repetitive neo-Y chromosome. While Y chromosome evolution is typically characterized by global sequence loss and shrinkage, the neo-Y increased in size by almost 3-fold, due to the accumulation of repetitive sequences. Our high-quality assembly allows us to reconstruct the chromosomal events that have led to the unusual sex chromosome karyotype in D. miranda, including the independent de novo formation of a pair of sex chromosomes at two distinct time points, or the reversion of a former Y chromosome to an autosome.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3