Artifact-free whole-slide imaging with structured illumination microscopy and Bayesian image reconstruction

Author:

Johnson Karl,Hagen Guy M.ORCID

Abstract

AbstractBackgroundStructured illumination microscopy (SIM) is a method which can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging setup and data processing methods results in high quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system.FindingsFive complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin and eosin.ConclusionThe use of fluorescence microscopy is increasing in histopathology. There is a need for methods which reduce artifacts when employing image stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results which may be useful for intraoperative histology. Releasing high quality, full slide images and related data will aid researchers in furthering the field of fluorescent histopathology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3