Two Novel Forms of ERG Oscillation in Drosophila: Age and Activity Dependence

Author:

Ueda Atsushi,Woods Scott,McElree Ian,O’Harrow Tristan C.D.G.,Inman Casey,Thenuwara Savantha,Aftab Muhammad,Iyengar Atulya

Abstract

AbstractOver an animal’s lifespan, neuronal circuits and systems often decline in an inherently heterogeneous fashion. To compare the age-dependent progression of changes in visual behavior with alterations in retinal physiology, we examined phototaxis and electroretinograms (ERGs) in a wild-type D. melanogaster strain (Canton-S) across their lifespan. In aged flies (beyond 50% median lifespan), we found a marked decline in phototaxis, while motor coordination was less disrupted, as indicated by relatively stronger negative geotaxis. These aged flies displayed substantially reduced ERG transient amplitudes while the receptor potentials (RP) remained largely intact. Using a repetitive light flash protocol, we serendipitously discovered two forms of activity-dependent oscillation in the ERG waveforms of young flies: “light-off’ and “light-on” oscillations. After repeated 500 ms light flashes, light-off oscillations appeared during the ERG off-transients (frequency: 50-120 Hz, amplitude: ~1 mV). Light-on oscillations (100-200 Hz, ~0.3 mV) were induced by a series of 50 ms flashes, and were evident during the ERG on-transients. Both forms of oscillation were observed in other strains of D. melanogaster(Oregon-R, Berlin), additional Drosophila species (funerbris, euronotus, hydei, americana), and were evoked by a variety of light sources. Both light-off and light-on oscillations were distinct from previously described ERG oscillations in visual mutants, such as rosA, in terms of location within the waveform and frequency. However, within rosA mutants, light-off oscillations, but not light-on oscillations could be recruited by the repetitive light flash protocol. Importantly though, we found that both forms of oscillation were rarely observed in aged flies. Although the physiological bases of these oscillations remain to be elucidated, they may provide important clues to age-related changes in neuronal excitability and synaptic transmission.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3