Synaptic specificity is collectively determined by partner identity, location and activity

Author:

Valdes-Aleman JavierORCID,Fetter Richard D.,Sales Emily C.,Doe Chris Q.,Landgraf Matthias,Cardona Albert,Zlatic Marta

Abstract

SummaryOur nervous system is organized into circuits with specifically matched and tuned cell-to-cell connections that are essential for proper function. The mechanisms by which presynaptic axon terminals and postsynaptic dendrites recognize each other and establish the correct number of connections are still incompletely understood. Sperry’s chemoaffinity hypothesis proposes that pre- and postsynaptic partners express specific combinations of molecules that enable them to recognize each other. Alternatively, Peters’ rule proposes that presynaptic axons and postsynaptic dendrites use non-partner-derived global positional cues to independently reach their target area, and once there they randomly connect with any available neuron. These connections can then be further refined by additional mechanisms based on synaptic activity. We used the tractable genetic model system, the Drosophila embryo and larva, to test these hypotheses and elucidate the roles of 1) global positional cues, 2) partner-derived cues and 3) synaptic activity in the establishment of selective connections in the developing nerve cord. We altered the position or activity of presynaptic partners and analyzed the effect of these manipulations on the number of synapses with specific postsynaptic partners, strength of functional connections, and behavior controlled by these neurons. For this purpose, we combined developmental live imaging, electron microscopy reconstruction of circuits, functional imaging of neuronal activity, and behavioral experiments in wildtype and experimental animals. We found that postsynaptic dendrites are able to find, recognize, and connect to their presynaptic partners even when these have been shifted to ectopic locations through the overexpression of receptors for midline guidance cues. This suggests that neurons use partner-derived cues that allow them to identify and connect to each other. However, while partner-derived cues are sufficient for recognition between specific partners and establishment of connections;; without orderly positioning of axon terminals by positional cues and without synaptic activity during embryonic development, the numbers of functional connections are altered with significant consequences for behavior. Thus, multiple mechanisms including global positional cues, partner-derived cues, and synaptic activity contribute to proper circuit assembly in the developing Drosophila nerve cord.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3