Towards personalized computer simulation of breast cancer treatment: a multi-scale pharmacokinetic and pharmacodynamic model informed by multi-type patient data

Author:

Lai XiaoranORCID,Geier Oliver MORCID,Fleischer ThomasORCID,Garred Øystein,Borgen ElinORCID,Funke Simon WolfgangORCID,Kumar Surendra,Elisabeth Rognes MarieORCID,Seierstad ThereseORCID,Børresen-Dale Anne-Lise,Kristensen Vessela N.,Engebraaten OlavORCID,Köhn-Luque AlvaroORCID,Frigessi Arnoldo

Abstract

AbstractMathematical modeling and simulation have emerged as a potentially powerful, time and cost effective approach to personalized cancer treatment. The usefulness of mechanistic models to disentangle complex multi-scale cancer processes such as treatment response has been widely acknowledged. However, a major barrier for multi-scale models to predict the outcomes of therapeutic regimens in a particular patient lies in their initialization and parameterization which need to reflect individual cancer characteristics accurately. In this study we use multi-type routinely acquired measurements on a single breast tumor, including histopathology, magnetic resonance imaging, and molecular profiling to personalize parts of a complex multi-scale model of breast cancer treated with chemotherapeutic and anti-angiogenic agents. We model the dynamics of drugs in tissue (pharmacokinetics) and the corresponding effects on their targets (pharmacodynamics). We developed a open-source computer program that simulates cross-sections of tumors under 12-week therapy regimes and use it to individually reproduce and elucidate treatment outcomes of four patients. For two of the tumors that did not respond to therapy, we used model simulations to suggest alternative regimes, depending on their individual characteristics, with improved outcomes. We found that more frequent doses of chemothereapy reduce tumor burden in a low proliferative tumor while lower doses of anti-angiogenic agents improve drug penetration in a poorly perfused tumor. In addition to bridge multi-type clinical data to shed light on individual treatment outcomes, our approach identified a few tumor-related aspects that need to be clinically portraited better to allow for future model-driven personalized cancer therapy.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Clinical Pharmacodynamics Studies in the Era of Precision Medicines Against Cancer;Drug Discovery and Evaluation: Methods in Clinical Pharmacology;2020

2. Role of Clinical Pharmacodynamics Studies in the Era of Precision Medicines Against Cancer;Drug Discovery and Evaluation: Methods in Clinical Pharmacology;2018-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3