Cytochrome cM downscales photosynthesis under photomixotrophy in Synechocystis sp. PCC 6803

Author:

Solymosi DanielORCID,Muth-Pawlak Dorota,Nikkanen LauriORCID,Fitzpatrick Duncan,Vasudevan Ravendran,Howe Christopher J.,Lea-Smith David J.ORCID,Allahverdiyeva YagutORCID

Abstract

AbstractPhotomixotrophy is a metabolic state, which enables photosynthetic microorganisms to simultaneously perform photosynthesis and metabolism of imported organic carbon substrates. This process is complicated in cyanobacteria, since many, including Synechocystis sp. PCC 6803, conduct photosynthesis and respiration in an interlinked thylakoid membrane electron transport chain. Under photomixotrophy, the cell must therefore tightly regulate electron fluxes from photosynthetic and respiratory complexes. In this study, we show via characterization of photosynthetic apparatus and the proteome, that photomixotrophic growth results in a gradual reduction of the plastoquinone pool in wild-type Synechocystis, which fully downscales photosynthesis over three days of growth. This process is circumvented by deleting the gene encoding cytochrome cM (CytM), a cryptic c-type heme protein widespread in cyanobacteria. ΔCytM maintained active photosynthesis over the three day period, demonstrated by high photosynthetic O2 and CO2 fluxes and effective yields of Photosystem II and Photosystem I. Overall, this resulted in a higher growth rate than wild-type, which was maintained by accumulation of proteins involved in phosphate and metal uptake, and cofactor biosynthetic enzymes. While the exact role of CytM has not been determined, a mutant deficient in the thylakoid-localised respiratory terminal oxidases and CytM (ΔCox/Cyd/CytM) displayed a similar phenotype under photomixotrophy to ΔCytM, demonstrating that CytM is not transferring electrons to these complexes, which has previously been suggested. In summary, the obtained data suggests that CytM may have a regulatory role in photomixotrophy by reducing the photosynthetic capacity of cells.One sentence summaryThe cryptic, highly conserved cytochrome cM completely blocks photosynthesis in Synechocystis under three days of photomixotrophy, possibly by suppressing CO2 assimilation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3