Robust Determination of Protein Allosteric Signaling Pathways

Author:

Botello-Smith Wesley M.,Luo YunORCID

Abstract

AbstractTo understand how protein function changes upon an allosteric perturbation, such as ligand binding and mutation, significant progress in characterizing allosteric network from molecular dynamics (MD) simulations has been made. However, determining which amino acid(s) play an essential role in the propagation of signals may prove challenging, even when the location of the source and sink is known for a protein or protein complex. This challenge is mainly due to the large fluctuations in protein dynamics that cause instability of the network topology within a single trajectory or between multiple replicas. To solve this problem, we introduce the current-flow betweenness scheme, originated from electrical network theory, to protein dynamical network analysis. To demonstrate the benefit of this new method, we chose a prototypic allosteric enzyme (IGPS or HisH-HisF dimer) as our benchmark system. Using multiple replicas of simulations and multiple network topology comparison metrics (edge ranking, path length, and node frequency), we show that the current-flow betweenness provides a significant improvement in the convergence of the allosteric networks. The improved stability of the network topology allows us to generate a delta-network between the apo and holo forms of the protein. We illustrated that the delta-network is a more rigorous way to capture the subtle changes in the networks that would otherwise be neglected by comparing node usage frequencies alone. We have also investigated the use of a linear smoothing function to improve the stability of the contact map. The methodology presented here is general and may be applied to other topology and weighting schemes. We thus conclude that, for determining protein signaling pathways between the pair(s) of source and sink, multiple MD simulation replicas are necessary and the current-flow betweenness scheme introduced here provides a more robust approach than the geodesic scheme based on correlation edge weighting.For Table of Contents Only

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3