Cutting in-line with iron: ribosomal function and non-oxidative RNA cleavage

Author:

Guth-Metzler Rebecca,Bray Marcus S.,Frenkel-Pinter Moran,Suttapitugsakul Suttipong,Montllor-Albalate Claudia,Bowman Jessica C.,Wu RonghuORCID,Reddi Amit R.ORCID,Okafor C. Denise,Glass Jennifer B.ORCID,Williams Loren DeanORCID

Abstract

AbstractDivalent metal cations are essential to the structure and function of the ribosome. Previous characterizations of the ribosome performed under standard laboratory conditions have implicated Mg2+ as a primary mediator of ribosomal structure and function. Possible contributions of Fe2+ as a ribosomal cofactor have been largely overlooked, despite the ribosome’s early evolution in a high Fe2+ environment, and its continued use by obligate anaerobes inhabiting high Fe2+ niches. Here we show that (i) Fe2+ cleaves RNA by in-line cleavage, a non-oxidative mechanism that has not previously been shown experimentally for this metal, (ii) the first-order rate constant with respect to divalent cations is more than 200 times greater with Fe2+ than with Mg2+, (iii) functional ribosomes are associated with Fe2+ after purification from cells grown under low O2 and high Fe2+, and (iv) a small fraction of Fe2+ that is associated with the ribosome is not exchangeable with surrounding divalent cations, presumably because it is tightly coordinated by rRNA and buried in the ribosome. In total, these results expand the ancient role of iron in biochemistry and highlight a possible new mechanism of iron toxicity.Key PointsFe2+ cleaves rRNA by a non-oxidative in-line cleavage mechanism that is more than 200 times faster than in-line cleavage with Mg2+;ribosomes purified from cells grown under low O2 and high Fe2+ retain ~10 Fe2+ ions per ribosome and produce as much protein as low O2, high Mg2+-grown ribosomes;a small fraction (~2%) of Fe2+ that is associated with the ribosome is not exchangeable.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3