Alternative splicing and translation play important roles in parallel with transcriptional regulation during rice hypoxic germination

Author:

Chen Mo-Xian,Zhu Fu-Yuan,Wang Feng-Zhu,Ye Neng-Hui,Gao Bei,Chen Xi,Zhao Shan-Shan,Fan Tao,Cao Yun-Ying,Liu Tie-Yuan,Su Ze-Zhuo,Xie Li-Juan,Hu Qi-Juan,Wu Hui-Jie,Xiao Shi,Zhang Jianhua,Liu Ying-Gao

Abstract

AbstractPost-transcriptional mechanisms, including alternative splicing (AS) and alternative translation initiation (ATI), have been used to explain the protein diversity involved in plant developmental processes and stress responses. Rice germination under hypoxia conditions is a classical model system for the study of low oxygen stress. It is known that there is transcriptional regulation during rice hypoxic germination, but the potential roles of AS and ATI in this process are not well understood. In this study, a proteogenomic approach was used to integrate the data from RNA sequencing, qualitative and quantitative proteomics to discover new players or pathways in the response to hypoxia stress. The improved analytical pipeline of proteogenomics led to the identification of 10,253 intron-containing genes, 1,729 of which were not present in the current annotation. Approximately 1,741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds in comparison to controls. Over 95% of these were not present in the list of differentially expressed genes (DEG). In particular, regulatory pathways such as spliceosome, ribosome, ER protein processing and export, proteasome, phagosome, oxidative phosphorylation and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of traditional transcriptional regulation. Massive AS changes were identified, including the preference usage of certain non-conventional splice sites and enrichment of splicing factors in the DAS datasets. In addition, using self-constructed protein libraries by 6-frame translation, thousands of novel proteins/peptides contributed by ATI were identified. In summary, these results provide deeper insights towards understanding the underlying mechanisms of AS and ATI during rice hypoxic germination.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3