Age-dependent changes in electrophysiology and calcium handling – implications for pediatric cardiac research

Author:

Swift Luther M.,Burke Morgan,Guerrelli Devon,Ramadan Manelle,Reilly Marissa,McCullough Damon,Chaluvadi Ashika,Mulvany Colm,Jaimes Rafael,Posnack Nikki Gillum

Abstract

ABSTRACTRationaleThe heart continues to develop and mature after birth and into adolescence. Accordingly, cardiac maturation is likely to include a progressive refinement in both organ morphology and function during the postnatal period. Yet, age-dependent changes in cardiac electrophysiology and calcium handling have not yet been fully characterized.ObjectiveThe objective of this study, was to examine the relationship between cardiac maturation, electrophysiology, and calcium handling throughout postnatal development in a rat model.MethodsPostnatal rat cardiac maturation was determined by measuring the expression of genes involved in cell-cell coupling, electrophysiology, and calcium handling. In vivo electrocardiograms were recorded from neonatal, juvenile, and adult animals. Simultaneous dual optical mapping of transmembrane voltage and calcium transients was performed on isolated, Langendorff-perfused rat hearts (postnatal day 0–3, 4-7, 8-14, adult).ResultsYounger, immature hearts displayed slowed electrical conduction, prolonged action potential duration and increased ventricular refractoriness. Slowed calcium handling in the immature heart increased the propensity for calcium transient alternans which corresponded to alterations in the expression of genes encoding calcium handling proteins. Developmental changes in cardiac electrophysiology were associated with the altered expression of genes encoding potassium channels and intercalated disc proteins.ConclusionUsing an intact whole heart model, this study highlights chronological changes in cardiac electrophysiology and calcium handling throughout postnatal development. Results of this study can serve as a comprehensive baseline for future studies focused on pediatric cardiac research, safety assessment and/or preclinical testing using rodent models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3