Abstract
SUMMARYSexual selection is well recognized as a driver of reproductive isolation between lineages. However, selection for increased reproductive isolation could reciprocally change the outcomes of sexual selection, when these processes share a genetic basis. Direct selection for reproductive isolation occurs in the context of ‘reinforcement’, where selection acts to increase prezygotic barriers to reduce the cost of heterospecific matings. Many studies of reinforcement focus on premating reproductive barriers, however postmating traits-such as conspecific sperm precedence (CSP)-can also respond to reinforcing selection. We tested whether i) CSP responded to reinforcing selection, and ii) this response in sympatric populations altered intraspecific sperm competition (ISC) and the strength of sexual selection, with the sister speciesDrosophila pseudoobscuraandD. persimilis. We used sperm competition experiments to evaluate differences in CSP and ISC between two sympatric and two allopatric populations ofD. pseudoobscura. Using multiple genotypes for each population allowed us to estimate not only patterns of phenotype divergence, but also the opportunity for sexual selection within each population. Consistent with a pattern of reinforcement, the sympatric populations had higher mean CSP. Moreover, ISC was altered in sympatric populations, where we observed decreased average offensive sperm competitive ability against conspecific males, allowing less opportunity for sexual selection to operate within these populations. These data demonstrate that strong reinforcing selection for reproductive isolation can have consequences for sexual selection and sexual interactions within species, in these important postmating sperm competition traits.
Publisher
Cold Spring Harbor Laboratory
Reference97 articles.
1. Dobzhansky, T. 1951. Genetics and the Origin of Species. Columbia University Press New York NY.
2. Howard, D.J . 1993. Reinforcement: origins, dynamics, and the fate of an evolutionary hypothesis in R.G. Harrison , ed. Hybrid Zones and Evolutionary Process. Oxford University Press, Oxford, pp. 46–69.
3. The role of reinforcement in speciation: Theory and data;Ann. Rev. Ecol. Evol,2003
4. Conspecific sperm and pollen precedence and speciation;Ann. Rev. Ecol. Evol,1999
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献