Abstract
ABSTRACTHomologous recombination (HR) is a DNA repair mechanism that ensures, together with heterochromatin machinery, the proper replication, structure and function of telomeres and centromeres that is essential for the maintenance of genome integrity. Schizosaccharomyces pombe Rrp1 and Rrp2 participate in HR and are orthologues of Saccharomyces cerevisiae Uls1, a SWI2/SNF2 DNA translocase and SUMO-Targeted Ubiquitin Ligase. We show that Rrp1 or Rrp2 upregulation leads to chromosome instability and growth defects. These phenotypes depend on putative DNA translocase activities of Rrp1 and Rrp2. Either Rrp1 or Rrp2 overproduction results in a reduction in global histone levels, suggesting that Rrp1 and Rrp2 may modulate nucleosome dynamics. In addition we show that Rrp2, but not Rrp1, acts at telomeres. We propose that this role depends on the previously described interaction between Rrp2 and Top2. We conclude that Rrp1 and Rrp2 have important roles for centromere and telomere function and maintenance, contributing to the preservation of genome stability during vegetative cell growth.SUMMARY STATEMENTSchizosaccharomyces pombe DNA translocases Rrp1 and Rrp2 modulate centromere and telomere maintenance pathways and dysregulation of their activity leads to genome instability.
Publisher
Cold Spring Harbor Laboratory