Abstract
AbstractIn stimulated emission depletion (STED) nanoscopy, the major origin of decreased signal-to-noise ratio within images can be attributed to sample photobleaching and strong optical aberrations. This is due to STED utilising both a high power depletion laser (increasing risk of photodamage), while the depletion beam is very sensitive to sample-induced aberrations. Here we demonstrate a custom-built 3D STED microscope with automated aberration correction that is capable of 3D super-resolution imaging through thick, highly aberrating, tissue. We introduce and investigate image denoising by block-matching and collaborative filtering (BM3D) to numerically enhance fine object details otherwise mixed with noise. Numerical denoising provides an increase in the final effective resolution of the STED imaging of 31% using the well-established Fourier ring correlation metric. Experimental validation of the proposed method is achieved through super-resolved 3D imaging of axons in differentiated induced pluripotent stem cells growing under a 80µm thick layer of tissue with lateral and axial resolution of 256nm and 300nm, respectively.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献