Numerically enhanced adaptive optics-based 3D STED microscopy for deep-tissue super-resolved imaging

Author:

Zdankowski PiotrORCID,Trusiak MaciejORCID,McGloin DavidORCID,Swedlow Jason R.ORCID

Abstract

AbstractIn stimulated emission depletion (STED) nanoscopy, the major origin of decreased signal-to-noise ratio within images can be attributed to sample photobleaching and strong optical aberrations. This is due to STED utilising both a high power depletion laser (increasing risk of photodamage), while the depletion beam is very sensitive to sample-induced aberrations. Here we demonstrate a custom-built 3D STED microscope with automated aberration correction that is capable of 3D super-resolution imaging through thick, highly aberrating, tissue. We introduce and investigate image denoising by block-matching and collaborative filtering (BM3D) to numerically enhance fine object details otherwise mixed with noise. Numerical denoising provides an increase in the final effective resolution of the STED imaging of 31% using the well-established Fourier ring correlation metric. Experimental validation of the proposed method is achieved through super-resolved 3D imaging of axons in differentiated induced pluripotent stem cells growing under a 80µm thick layer of tissue with lateral and axial resolution of 256nm and 300nm, respectively.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Expansion STED microscopy (ExSTED);Methods in Cell Biology;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3