DeepNose: Using artificial neural networks to represent the space of odorants

Author:

Tran Ngoc,Kepple Daniel,Shuvaev Sergey A.,Koulakov Alexei A.

Abstract

The olfactory system employs an ensemble of odorant receptors (ORs) to sense odorants and to derive olfactory percepts. We trained artificial neural networks to represent the chemical space of odorants and used that representation to predict human olfactory percepts. We hypothesized that ORs may be considered 3D spatial filters that extract molecular features and can be trained using conventional machine learning methods. First, we trained an autoencoder, called DeepNose, to deduce a low-dimensional representation of odorant molecules which were represented by their 3D spatial structure. Next, we tested the ability of DeepNose features in predicting physical properties and odorant percepts based on 3D molecular structure alone. We found that despite the lack of human expertise, DeepNose features led to perceptual predictions of comparable accuracy to molecular descriptors often used in computational chemistry. We propose that DeepNose network can extract de novo chemical features predictive of various bioactivities and can help understand the factors influencing the composition of ORs ensemble.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition

2. Combinatorial Receptor Codes for Odors

3. Odor Coding by a Mammalian Receptor Repertoire

4. Precision and diversity in an odor map on the olfactory bulb

5. Olender, T. , Feldmesser, E. , Atarot, T. , Eisenstein, M. & Lancet, D. The olfactory receptor universe - From whole genome analysis to structure and evolution. in Genetics and Molecular Research (2004). doi:0003 [pii]

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3