Abstract
ABSTRACTLong-lasting CD8+ T cell responses are critical in combatting infections and tumors. The pro-inflammatory cytokine IFN-γ is a key effector molecule herein. We recently showed that in murine T cells, the production of IFN-γ is tightly regulated through AU-rich elements (AREs) that are located in the 3’ Untranslated Region (UTR). Loss of AREs resulted in prolonged cytokine production in activated T cells and boosted anti-tumoral T cell responses. Here, we investigated whether these findings can be translated to primary human T cells. Utilizing CRISPR-Cas9 technology, we deleted the ARE region from the IFNG 3’UTR in peripheral blood-derived human T cells. Loss of AREs stabilized the IFNG mRNA in T cells and supported a higher proportion of sustained IFN-γ protein-producing T cells. Importantly, this was also true for tumor antigen-specific T cells. MART-1 TCR engineered T cells that were gene-edited for ARE-deletion showed increased percentages of IFN-γ producing MART-1-specific ARE-Del T cells in response to MART-1 expressing tumor cells. Combined, our study reveals that ARE-mediated post-transcriptional regulation is highly conserved between murine and human T cells. Furthermore, generating antigen-specific ARE-Del T cells is feasible, a feature that could potentially be exploited for therapeutical purposes.
Publisher
Cold Spring Harbor Laboratory