Author:
Fernandes Philippe,Miotto Benoit,Saint-Ruf Claude,Nähse Viola,Ravera Silvia,Cappelli Enrico,Naim Valeria
Abstract
AbstractCommon fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability relies on transcription- and replication-dependent mechanisms. Here, we uncover a role for the UBL5-dependent branch of the unfolded protein response pathway (UPR) in the maintenance of CFS stability. We show that genetic or pharmacological UPR activation induces CFS gene expression and concomitant relocalization of FANCD2, a master regulator of CFS stability, to CFSs. Furthermore, a genomic analysis of FANCD2 binding sites identified an enrichment for mitochondrial UPR transcriptional response elements in FANCD2 bound regions. We demonstrated that depletion of FANCD2 increases CFS gene transcription and their instability while also inducing mitochondrial dysfunction and triggering the activation of the UPR pathway. Depletion of UBL5, a mediator of the UPR, but not ATF4, reduces CFS gene expression and breakage in FANCD2-depleted cells. We thus demonstrate that FANCD2 recruitment and function at CFSs depends on transcription and UPR signaling, and in absence of transcription or UBL5, FANCD2 is dispensable for CFS stability. We propose that FANCD2 coordinates nuclear and mitochondrial activities by tuning the UPR to prevent genome instability.
Publisher
Cold Spring Harbor Laboratory