Intracellular Delivery of Nanoparticles via Microelectrophoresis Technique: Feasibility demonstration

Author:

Han MengkeORCID,Zhao Jiangbo,Fabian Joseph Mahandas,Mustafa Sanam,Ruan Yinlan,Wiederman Steven,Ebendorff-Heidepriem Heike

Abstract

ABSTRACTNanoparticles with desirable properties and functions have been actively developed for various bio-medical research, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. However, an effective method to deliver nanoparticles into the intracellular environment is a major challenge and critical to many biological studies. Current techniques, such as intracellular uptake, electroporation and microinjection, each have their own set of benefits and associated limitations (e.g., aggregation and endosomal degradation of nanoparticles, high cell mortality and low throughput). Here, the well-established microelectrophoresis technique is applied for the first time to deliver nanoparticles into target cells, which overcomes some of these delivery difficulties. Semiconductive quantum dots, with average hydrodynamic diameter of 24.4 nm, have been successfully ejected via small electrical currents (−0.2 nA) through fine-tipped glass micropipettes as an example, into living human embryonic kidney cells (roughly 20 - 30μm in length). As proposed by previous studies, micropipettes were fabricated to have an average tip inner diameter of 206 nm for ejection but less than 500 nm to minimize the cell membrane damage and cell distortion. In addition, delivered quantum dots were found to stay monodispersed within the cells for approximately one hour. We believe that microelectrophoresis technique may serve as a simple and general strategy for delivering a variety of nanoparticles intracellularly in various biological systems.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. In Vitro and Ex Vivo Strategies for Intracellular Delivery;Nature,2016

2. Strategies for the intracellular delivery of nanoparticles

3. Challenges in Carrier-Mediated Intracellular Delivery: Moving Beyond Endosomal Barriers;Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.,2016

4. Probing cellular events, one quantum dot at a time

5. Intracellular Tracking of Single Native Molecules with Electroporation-Delivered Quantum Dots;Anal. Chem.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3