Author:
Chen Huazhi,Fan Xiaoxue,Du Yu,Fan Yuanchan,Wang Jie,Jiang Haibin,Xiong Cuiling,Zheng Yanzhen,Chen Dafu,Guo Rui
Abstract
ABSTRACTApis mellifera ligustica is a subspecies of western honeybee, Apis mellifera. Nosema ceranae is known to cause bee microspodiosis, which seriously affects bee survival and colony productivity. In this article, Nanopore long-read sequencing was used to sequence N. ceranae-infected and un-infected midguts of A. m. ligustica workers at 7 d and 10 d post inoculation (dpi). In total, 5942745, 6664923, 7100161 and 6506665 raw reads were respectively yielded from AmT1, AmT2, AmCK1 and AmCK2, with average lengths of 1148, 1196, 1178 and 1201 bp, and N50 of 1328, 1394, 1347 and 1388 bp. The length distribution of raw reads from AmT1, AmT2, AmCK1 and AmCK2 was ranged from 1 kb to more than 10 kb. Additionally, the distribution of quality score of raw reads from AmT1 and AmT2 was among Q6∼Q12, while that from AmCK1 and AmCK2 was among Q6∼Q16. Further, 5745048, 6416987, 6928170, 6353066 clean reads were respectively gained from AmT1, AmT2, AmCK1 and AmCK2, and among them 4172542, 4638289, 5068270 and 4857960 were identified as being full-length. After removing redundant reads, the length distribution of remaining full-length transcripts was among 1 kb∼8 kb, with the most abundant length of 2 kb. The long-read transcriptome data reported here contributes to a deeper understanding of the molecular regulating N. ceranae-response of A. m. ligustica and host-fungal parasite interaction during microsporidiosis.
Publisher
Cold Spring Harbor Laboratory