Author:
Winkelman Jonathan D.,Anderson Caitlin A.,Suarez Cristian,Kovar David R.,Gardel Margaret L.
Abstract
SUMMARYThe actin cytoskeleton assembles into diverse load-bearing networks including stress fibers, muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl-1 & Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force-sensitivity. Zyxin rapidly localizes via its LIM domains to failing stress fibers in cells, known as strain sites, to initiate stress fiber repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We observe that many, but not all, LIM domains from functionally diverse proteins localize to spontaneous or induced stress fiber strain sites in mammalian cells. Additionally, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to stress fiber strain sites in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. Sequence analysis and mutagenesis of the LIM domain region of zyxin indicate a requirement of tandem LIM domains, which contribute additively, for sensing stress fiber strain sites. In vitro, purified LIM domains from mammalian zyxin and fission yeast Pxl1 bind to mechanically stressed F-actin networks but do not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献