Abstract
AbstractThe reaction of species to changing conditions determines how community composition will change functionally — not only by (temporal) species turnover, but also by trait shifts within species. For the latter, selection from standing variation has been suggested to be more efficient than acquiring new mutations. Yet, studies on community trait composition and trait selection largely focus on phenotypic variation in ecological traits, whereas the underlying genomic traits remain relatively understudied despite evidence of their role to standing variation. Using a genome-explicit, niche- and individual-based model, we address the potential interactions between genomic and ecological traits shaping communities under an environmental selective forcing, namely temporal variation. In this model, all ecological traits are explicitly coded by the genome. For our experiments, we initialized 90 replicate communities, each with ca. 350 initial species, characterized by random genomic and ecological trait combinations, on a 2D spatially-explicit landscape with two orthogonal gradients (temperature and resource use). We exposed each community to two contrasting scenarios: without (i.e. static environments) and with temporal variation. We then analyzed emerging compositions of both genomic and ecological traits at the community, population and genomic levels. Communities in variable environments were species poorer than in static environments, populations more abundant and genomes had a higher numbers of genes. The surviving genomes (i.e. those selected by variable environments) coded for enhanced environmental tolerance and smaller biomass, which resulted in faster life cycles and thus also in increased potential for evolutionary rescue. Even under the constant environmental filtering presented by temporal environmental variation, larger, more linked genomes allowed selection of increased variation in dispersal abilities. Our results provide clues to how sexually-reproducing diploid plant communities might react to increased environmental variation and highlights the importance of genomic traits and their interaction with ecological traits for eco-evolutionary responses to changing climates.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献