Towards CNN Representations for Small Mass Spectrometry Data Classification: From Transfer Learning to Cumulative Learning

Author:

Seddiki Khawla,Saudemont Philippe,Precioso Frédéric,Ogrinc Nina,Wisztorski Maxence,Salzet Michel,Fournier Isabelle,Droit Arnaud

Abstract

AbstractRapid and accurate clinical diagnosis of pathological conditions remains highly challenging. A very important component of diagnosis tool development is the design of effective classification models with Mass spectrometry (MS) data. Some popular Machine Learning (ML) approaches have been investigated for this purpose but these ML models require time-consuming preprocessing steps such as baseline correction, denoising, and spectrum alignment to remove non-sample-related data artifacts. They also depend on the tedious extraction of handcrafted features, making them unsuitable for rapid analysis. Convolutional Neural Networks (CNNs) have been found to perform well under such circumstances since they can learn efficient representations from raw data without the need for costly preprocessing. However, their effectiveness drastically decreases when the number of available training samples is small, which is a common situation in medical applications. Transfer learning strategies extend an accurate representation model learnt usually on a large dataset containing many categories, to a smaller dataset with far fewer categories. In this study, we first investigate transfer learning on a 1D-CNN we have designed to classify MS data, then we develop a new representation learning method when transfer learning is not powerful enough, as in cases of low-resolution or data heterogeneity. What we propose is to train the same model through several classification tasks over various small datasets in order to accumulate generic knowledge of what MS data are, in the resulting representation. By using rat brain data as the initial training dataset, a representation learning approach can have a classification accuracy exceeding 98% for canine sarcoma cancer cells, human ovarian cancer serums, and pathogenic microorganism biotypes in 1D clinical datasets. We show for the first time the use of cumulative representation learning using datasets generated in different biological contexts, on different organisms, in different mass ranges, with different MS ionization sources, and acquired by different instruments at different resolutions. Our approach thus proposes a promising strategy for improving MS data classification accuracy when only small numbers of samples are available as a prospective cohort. The principles demonstrated in this work could even be beneficial to other domains (astronomy, archaeology…) where training samples are scarce.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3