iHyd-ProSite: A novel Computational Approach for Identifying Hydroxylation Sites in Proline Via Mathematical Modeling

Author:

Mahmood Muhammad Khalid,Ehsan Asma,Khan Yaser Daanial

Abstract

AbstractIn various cellular functions, post translational modifications (PTM) of protein play a vital role. The addition of certain functional group through a covalent bond to the protein induces PTM. The number of PTMs are identified which are closely linked with diseases for example cancer and neurological disorder. Hydroxylation is one of the PTM, modified proline residue within a polypeptide sequence. The defective hydroxylation of proline causes absences of ascorbic acid in human which produce scurvy, and many other dominant health issues. Undoubtedly, the prediction of hydroxylation sites in proline residues is of challenging frontier. The experimental identification of hydroxyproline site is quite difficult, high-priced and time-consuming. The diversity in protein sequences instigates to develop a computational tool to identify hydroxylated site within short time with excellent prediction accuracy to handle such proteomics problems. In this work a novel in silico predictor is developed through rigorous mathematical modeling to identify which site of proline is hydroxylated and which site is not? Then performance of the predictor was verified using three validations tests, namely self-consistency test, cross-validation test and jackknife test over the benchmark dataset. A comparison was established for jackknife test with the previous methods. In comparison with previous predictors the proposed tool is more accurate than the existing techniques. Hence this scheme is highly useful and inspiring in contrast to all previous predictors.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3