Author:
Mahmood Muhammad Khalid,Ehsan Asma,Khan Yaser Daanial
Abstract
AbstractIn various cellular functions, post translational modifications (PTM) of protein play a vital role. The addition of certain functional group through a covalent bond to the protein induces PTM. The number of PTMs are identified which are closely linked with diseases for example cancer and neurological disorder. Hydroxylation is one of the PTM, modified proline residue within a polypeptide sequence. The defective hydroxylation of proline causes absences of ascorbic acid in human which produce scurvy, and many other dominant health issues. Undoubtedly, the prediction of hydroxylation sites in proline residues is of challenging frontier. The experimental identification of hydroxyproline site is quite difficult, high-priced and time-consuming. The diversity in protein sequences instigates to develop a computational tool to identify hydroxylated site within short time with excellent prediction accuracy to handle such proteomics problems. In this work a novel in silico predictor is developed through rigorous mathematical modeling to identify which site of proline is hydroxylated and which site is not? Then performance of the predictor was verified using three validations tests, namely self-consistency test, cross-validation test and jackknife test over the benchmark dataset. A comparison was established for jackknife test with the previous methods. In comparison with previous predictors the proposed tool is more accurate than the existing techniques. Hence this scheme is highly useful and inspiring in contrast to all previous predictors.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献