Glycolytic metabolism of pathogenic T cells enables early detection of GvHD by 13C-MRI

Author:

Assmann Julian C.ORCID,Farthing Don E.ORCID,Saito Keita,Maglakelidze NatellaORCID,Oliver Brittany,Warrick Kathrynne A.ORCID,Sourbier Carole,Ricketts Christopher J.,Meyer Thomas J.,Pavletic Steven Z.ORCID,Linehan W. Marston,Krishna Murali C.,Gress Ronald E.,Buxbaum Nataliya P.ORCID

Abstract

AbstractGraft-versus-host disease (GvHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (HSCT). Definitive diagnosis of GvHD is invasive and biopsies of involved tissues pose a high risk of bleeding and infection. Our previous studies in a chronic GvHD mouse model demonstrated that alloreactive CD4+ T cells are distributed to target organs ahead of overt symptoms, meanwhile CD4+ T cell activation is tied to increased glycolysis. Thus, we hypothesized that metabolic imaging of glycolysis would allow non-invasive detection of insipient GvHD in target organs infiltrated by glycolytic effector memory CD4+ T cells. We metabolically characterized CD4+ T cell subsets on day 14 post-transplant before the onset of chronic GvHD in a pre-clinical mouse model and performed 13C hyperpolarized magnetic resonance imaging (MRI) to quantify glycolytic activity in the liver of mice over the course of the disease. Intracellular metabolic screening and ex vivo metabolic profiling of CD4+ T cell subsets at day 14 confirmed that activated CD4+ T cells were highly glycolytic. Concurrently, hyperpolarized 13C-pyruvate MRI of the liver showed high conversion of pyruvate to lactate, indicative of increased glycolytic activity, that distinguished allogeneic from syngeneic HSCT recipients prior to the development of overt chronic GvHD. Furthermore, single cell sequencing of T cells in patients undergoing allogeneic HSCT indicated that similar metabolic changes may play a role in acute GvHD, providing a rationale for testing this imaging approach in the clinical post-HSCT setting. Our imaging approach is amenable to clinical translation and may allow early, non-invasive diagnosis of GvHD.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3