Transcriptional network analysis of transcriptomic diversity in resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system

Author:

Summers Kim M.,Bush Stephen J.,Hume David A.

Abstract

AbstractThe mononuclear phagocyte system (MPS) is a family of cells including progenitors, circulating blood monocytes, resident tissue macrophages and dendritic cells (DC) present in every tissue in the body. To test the relationships between markers and transcriptomic diversity in the MPS, we collected from NCBI-GEO >500 quality RNA-seq datasets generated from mouse MPS cells isolated from multiple tissues. The primary data were randomly down-sized to a depth of 10 million reads and requantified. The resulting dataset was clustered using the network analysis tool Graphia. A sample-to-sample matrix revealed that MPS populations could be separated based upon tissue of origin. Cells identified as classical DC subsets, cDC1 and cDC2, and lacking Fcgr1 (CD64), were centrally-located within the MPS cluster and no more distinct than other MPS cell types. A gene-to-gene correlation matrix identified large generic co-expression clusters associated with MPS maturation and innate immune function. Smaller co-expression gene clusters including the transcription factors that drive them showed higher expression within defined isolated cells, including macrophages and DC from specific tissues. They include a cluster containing Lyve1 that implies a function in endothelial cell homeostasis, a cluster of transcripts enriched in intestinal macrophages and a generic cDC cluster associated with Ccr7. However, transcripts encoding many other putative MPS subset markers including Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Retnla and H2-a/e (class II MHC) clustered idiosyncratically and were not correlated with underlying functions. The data provide no support for the concept of markers of M2 polarization or the specific adaptation of DC to present antigen to T cells. Co-expression of immediate early genes (e.g. Egr1, Fos, Dusp1) and inflammatory cytokines and chemokines (Tnf, Il1b, Ccl3/4) indicated that all tissue disaggregation protocols activate MPS cells. Tissue-specific expression clusters indicated that all cell isolation procedures also co-purify other unrelated cell types that may interact with MPS cells in vivo. Comparative analysis of public RNA-seq and single cell RNA-seq data from the same lung cell populations showed that the extensive heterogeneity implied by the global cluster analysis may be even greater at a single cell level with few markers strongly correlated with each other. This analysis highlights the power of large datasets to identify the diversity of MPS cellular phenotypes, and the limited predictive value of surface markers to define lineages, functions or subpopulations.

Publisher

Cold Spring Harbor Laboratory

Reference182 articles.

1. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells;Bull World Health Organ,1972

2. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis

3. Fetal monocytes and the origins of tissue-resident macrophages;Cell Immunol,2018

4. Nature and nurture of tissue-specific macrophage phenotypes;Atherosclerosis,2019

5. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages;Trends Immunol,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3