Morphological and physiological response strategies of Vallisneria natans at different water depths and light conditions

Author:

Chou QingchuanORCID,Chen Jianfeng,Zhang Wei,Ren Wenjing,Yuan Changbo,Zhang XiaolinORCID,Cao Te,Ni Leyi,Jeppesen Erik

Abstract

AbstractPhenotypic plasticity is an important adaptation to spatial and temporal environmental variations. For submerged macrophytes, adaptation to water depth and light variation is particularly important. To determine the morphological and physiological adaptive strategies of Vallisneria natans at different water depths and light conditions, we combined field investigation, light control experiment and in situ physiological response experiment. In the field investigation and the light control experiment, both water depth and light intensity had prominent effects on the morphological of V. natans, especially in fresh weight and leaf length. The leaf length elongated more rapidly at intermediate water depth sites with lower light intensity. In the in situ experiment, the survival boundary of V. natans is 5.5 m in Lake Erhai. Below this depth, the chlorophyll-a content increased gradually with increasing water depth. Our results demonstrated that V. natans can adapt to water depth and light availability by changing morphological, physiological and resource allocation. At low light condition, V. natans invested more resource for light acquisition, simultaneously, changing the photosynthetic pigment content to compensate for light attenuation; conversely, more resource was directed towards reproduction. These results will provide new insight for species selection when conducting aquatic plants restoration in freshwater ecosystem.HIGHLIGHTSWater depth and light availability affect the morphology, physiology, and resource allocation of V. natans.An alternative resource allocation pattern of V. natans could shift between light acquisition and reproduction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3