A Single Membrane Protein Required for Atrial Secretory Granule Formation

Author:

Bäck Nils,Luxmi RajORCID,Powers Kathryn G.,Mains Richard E.ORCID,Eipper Betty A.ORCID

Abstract

AbstractThe discovery of atrial secretory granules and the natriuretic peptides stored in them identified the atrium as an endocrine organ. Although neither atrial nor brain natriuretic peptide (ANP, BNP) is amidated, the major membrane protein in atrial granules is Peptidylglycine α-Amidating Monooxygenase (PAM), an enzyme essential for amidated peptide biosynthesis. Mice lacking cardiomyocyte PAM (PamMyh6-cKO/cKO) are viable, but a gene dosage-dependent drop in atrial ANP and BNP content occurred. Ultrastructural analysis of adultPamMyh6-cKO/cKOatria revealed a 20-fold drop in the volume fraction of secretory granules and a decrease in peripherally localized Golgi complexes. When primary cultures ofPam0-Cre-cKO/cKOatrial myocytes (PAM floxed, no Cre recombinase) were transduced with Cre-GFP lentivirus, PAM protein levels dropped, followed by a decline in proANP levels. Expression of exogenous PAM inPamMyh6-cKO/cKOatrial myocytes produced a dose-dependent increase in proANP content. Strikingly, rescue of proANP content did not require the monooxygenase activity of PAM. Unlike many prohormones, atrial proANP is stored intact and its basal secretion is stimulated by drugs that inhibit Golgi-localized Arf activators. Increased basal secretion of proANP was a major contributor to its reduced levels inPamMyh6-cKO/cKOmyocytes; the inability of these drugs to inhibit basal proANP secretion byPamMyh6-cKO/cKOmyocytes revealed a role for COPI-mediated recycling of PAM to the endoplasmic reticulum. Analysis of atrial coated vesicles and the ability PAM to make fluorescently-tagged proANP accumulate in thecis-Golgi region of cells lacking secretory granules revealed a non-catalytic role for PAM in soluble cargo trafficking early in the secretory pathway.SignificanceTransmission electron microscopy of atrial cardiomyocytes revealed dense granules resembling those in endocrine cells and neurons, leading to the discovery of the natriuretic peptides stored in these granules. Subsequent studies revealed features unique to atrial granules, including high level expression of Peptidylglycine α-Amidating Monooxygenase (PAM), an enzyme required for the synthesis of many neuropeptides, but not for the synthesis of natriuretic peptides. The discovery that atrial myocytes lacking PAM are unable to produce granules and that PAM lacking its monooxygenase activity can rescue granule formation provides new information about the proANP secretory pathway. A better understanding of the unique features of atrial cell biology should provide insight into atrial fibrillation, the most common cardiac arrhythmia, atrial amyloidosis and heart failure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3