Eco-epidemiological assessment of the COVID-19 epidemic in China, January-February 2020

Author:

Byass PeterORCID

Abstract

AbstractBackgroundThe outbreak of COVID-19 in China in early 2020 provides a rich data source for exploring the ecological determinants of this new infection, which may be of relevance elsewhere.ObjectivesAssessing the spread of the COVID-19 across China, in relation to associations between cases and ecological factors including population density, temperature, solar radiation and precipitation.MethodsOpen-access COVID-19 case data include 18,069 geo-located cases in China during January and February 2020, which were mapped onto a 0.25° latitude/longitude grid together with population and weather data (temperature, solar radiation and precipitation). Of 15,539 grid cells, 559 (3.6%) contained at least one case, and these were used to construct a Poisson regression model of cell-weeks. Weather parameters were taken for the preceding week given the established 5-7 day incubation period for COVID-19. The dependent variable in the Poisson model was incident cases per cell-week and exposure was cell population, allowing for clustering of cells over weeks, to give incidence rate ratios.ResultsThe overall COVID-19 incidence rate in cells with confirmed cases was 0.12 per 1,000. There was a single case in 113/559 (20.2%) of cells, while two grid cells recorded over 1,000 cases. Weekly means of maximum daily temperature varied from −28.0 to 30.1 °C, minimum daily temperature from −42.4 to 23.0 °C, maximum solar radiation from 0.04 to 2.74 MJm−2 and total precipitation from 0 to 72.6 mm. Adjusted incidence rate ratios suggested brighter, warmer and drier conditions were associated with lower incidence.ConclusionThough not demonstrating cause and effect, there were appreciable associations between weather and COVID-19 incidence during the epidemic in China. This does not mean the pandemic will go away with summer weather but demonstrates the importance of using weather conditions in understanding and forecasting the spread of COVID-19.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3