Evaluating and integrating spatial capture-recapture models with data of variable individual identifiability

Author:

Ruprecht Joel S.,Eriksson Charlotte E.,Forrester Tavis D.,Clark Darren A.,Wisdom Michael J.,Rowland Mary M.,Johnson Bruce K.,Levi TaalORCID

Abstract

AbstractSpatial capture-recapture (SCR) models have become the preferred tool for estimating densities of carnivores. Within this family of models are variants requiring identification of all individuals in each encounter (SCR), a subset of individuals only (generalized spatial mark-resight, gSMR), or no individual identification (spatial count or spatial presence-absence). Although each technique has been shown through simulation to yield unbiased results, the consistency and relative precision of estimates across methods in real-world settings are seldom considered. We tested a suite of models ranging from those only requiring detections of unmarked individuals to others that integrate remote camera, physical capture, genetic, and global positioning system (GPS) data into a ‘hybrid’ model, to estimate population densities of black bears, bobcats, cougars, and coyotes. For each species we genotyped fecal DNA collected with detection dogs during a 20-day period. A subset of individuals from each species was affixed with GPS collars bearing unique markings and resighted by remote cameras over 140 days contemporaneous with scat collection. Camera-based gSMR models produced density estimates that differed by less than 10% from genetic SCR for bears, cougars, and coyotes once important sources of variation (sex or behavioral status) were controlled for. For bobcats, SCR estimates were 33% higher than gSMR. The cause of the discrepancies in estimates was likely attributable to challenges designing a study compatible for species with disparate home range sizes and the difficulty of collecting sufficient data in a timeframe in which demographic closure could be assumed. Unmarked models estimated densities that varied greatly from SCR, but estimates became more consistent in models wherein more individuals were identifiable. Hybrid models containing all data sources exhibited the most precise estimates for all species. For studies in which only sparse data can be obtained and the strictest model assumptions are unlikely to be met, we suggest researchers use caution making inference from models lacking individual identity. For best results, we further recommend the use of methods requiring at least a subset of the population is marked and that multiple datasets are incorporated when possible.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3