Exploring Chromosomal Structural Heterogeneity Across Multiple Cell Lines

Author:

Cheng Ryan R.ORCID,Contessoto Vinicius,Aiden Erez LiebermanORCID,Wolynes Peter G.ORCID,Di Pierro Michele,Onuchic José N.

Abstract

AbstractWe study the structural ensembles of human chromosomes across different cell types. Using computer simulations, we generate cell-specific 3D chromosomal structures and compare them to recently published chromatin structures obtained through microscopy. We demonstrate using a combination of machine learning and polymer physics simulations that epigenetic information can be used to predict the structural ensembles of multiple human cell lines. The chromosomal structures obtained in silico are quantitatively consistent with those obtained through microscopy as well as DNA-DNA proximity ligation assays. Theory predicts that chromosome structures are fluid and can only be described by an ensemble, which is consistent with the observation that chromosomes exhibit no unique fold. Nevertheless, our analysis of both structures from simulation and microscopy reveals that short segments of chromatin make transitions between a closed conformation and an open dumbbell conformation. This conformational transition appears to be consistent with a two-state process with an effective free energy cost of about four times the effective information theoretic temperature. Finally, we study the conformational changes associated with the switching of genomic compartments observed in human cell lines. Genetically identical but epigenetically distinct cell types appear to rearrange their respective structural ensembles to expose segments of transcriptionally active chromatin, belonging to the A genomic compartment, towards the surface of the chromosome, while inactive segments, belonging to the B compartment, move to the interior. The formation of genomic compartments resembles hydrophobic collapse in protein folding, with the aggregation of denser and predominantly inactive chromatin driving the positioning of active chromatin toward the surface of individual chromosomal territories.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3