Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa

Author:

Basinski Andrew J.ORCID,Fichet-Calvet Elisabeth,Sjodin Anna R.,Varrelman Tanner J.,Remien Christopher H.,Layman Nathan C.,Bird Brian H.,Wolking David J.,Monagin Corina,Ghersi Bruno M.,Barry Peter A.,Jarvis Michael A.,Gessler Paul E.,Nuismer Scott L.

Abstract

AbstractForecasting the risk of pathogen spillover from reservoir populations of wild or domestic animals is essential for the effective deployment of interventions such as wildlife vaccination or culling. Due to the sporadic nature of spillover events and limited availability of data, developing and validating robust, spatially explicit, predictions is challenging. Recent efforts have begun to make progress in this direction by capitalizing on machine learning methodologies. An important weakness of existing approaches, however, is that they generally rely on combining human and reservoir infection data during the training process and thus conflate risk attributable to the prevalence of the pathogen in the reservoir population with the risk attributed to the realized rate of spillover into the human population. Because effective planning of interventions requires that these components of risk be disentangled, we developed a multi-layer machine learning framework that separates these processes. Our approach begins by training models to predict the geographic range of the primary reservoir and the subset of this range in which the pathogen occurs. The spillover risk predicted by the product of these reservoir specific models is then fit to data on realized patterns of historical spillover into the human population. The result is a geographically specific spillover risk forecast that can be easily decomposed and used to guide effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regularly spills over into the human population across West Africa, results in a model that explains a modest but statistically significant portion of geographic variation in historical patterns of spillover. When combined with a mechanistic mathematical model of infection dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa virus each year across West Africa, with Nigeria accounting for more than half of these human infections.Author SummaryThe 2019 emergence of SARS-CoV-2 is a grim reminder of the threat animal-borne pathogens pose to human health. Even prior to SARS-CoV-2, the spillover of pathogens from animal reservoirs was a persistent problem, with pathogens such as Ebola, Nipah, and Lassa regularly but unpredictably causing outbreaks. Machine-learning models that anticipate when and where pathogen transmission from animals to humans is likely to occur would help guide surveillance efforts and preemptive countermeasures like information campaigns or vaccination programs. We develop a novel machine learning framework that uses datasets describing the distribution of a virus within its host and the range of its animal host, along with data on spatial patterns of human immunity, to infer rates of animal-to-human transmission across a region. By training the model on data from the animal host alone, our framework allows rigorous validation of spillover predictions using human data. We apply our framework to Lassa fever, a viral disease of West Africa that is spread to humans by rodents, and use the predictions to update estimates of Lassa virus infections in humans. Our results suggest that Nigeria is most at risk for the emergence of Lassa virus, and should be prioritized for outbreak-surveillance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3