Author:
Zhang Hui,Badur Mehmet G.,Spiering Sean,Divakaruni Ajit,Meurs Noah E.,Yu Michael S.,Colas Alexandre R.,Murphy Anne N.,Mercola Mark,Metallo Christian M.
Abstract
AbstractObjectivesPluripotent stem cell-derived cardiomyocytes are phenotypically immature, which limits their utility in downstream applications. Metabolism is dramatically reprogramed during cardiac maturationin vivoand presents a potential avenue to drivein vitromaturation. We aimed to identify and address metabolic bottlenecks in the generation of human pluripotent stem cell (hPSC)-derived cardiomyocytes.MethodshPSCs were differentiated into cardiomyocytes using an established, chemically-defined differentiation protocol. We applied 13C metabolic flux analysis (MFA) and targeted transcriptomics to characterize cardiomyocyte metabolism in during differentiation in the presence or absence of exogenous lipids.ResultshPSC-derived cardiomyocytes induced some cardiometabolic pathways (i.e. ketone body and branched-chain amino acid oxidation) but failed to effectively activate fatty acid oxidation. MFA studies indicated that lipid availability in cultures became limited during differentiation, suggesting potential issues with nutrient availability. Exogenous supplementation of lipids improved cardiomyocyte morphology, mitochondrial function, and promoted increased fatty acid oxidation in hPSC-derivatives.ConclusionhPSC-derived cardiomyocytes are dependent upon exogenous sources of lipids for metabolic maturation. Proper supplementation removes a potential roadblock in the generation of metabolically mature cardiomyocytes. These studies further highlight the importance of considering and exploiting metabolic phenotypes in thein vitroproduction and utilization of functional hPSC-derivatives.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献