Whole-chromosome fusions in the karyotype evolution of Sceloporus (Iguania, Reptilia) are more intense in sex chromosomes than autosomes

Author:

Lisachov Artem P.,Tishakova Katerina V.,Romanenko Svetlana A.,Molodtseva Anna S.,Prokopov Dmitry Yu.,Pereira Jorge C.,Ferguson-Smith Malcolm A.,Borodin Pavel M.,Trifonov Vladimir A.

Abstract

AbstractThere is a growing body of evidence that the common ancestor of vertebrates had a bimodal karyotype, i.e. consisting of large macrochromosomes and small microchromosomes. This type of karyotype organization is preserved in most reptiles. However, certain species independently experience microchromosome fusions. The evolutionary forces behind this are unclear. We investigated the karyotype of the green spiny lizard, Sceloporus malachiticus, an iguana species which has 2n=22, whereas the ancestral karyotype of iguanas had 2n=36. We obtained and sequenced flow-sorted chromosome-specific DNA samples and found that most of the microchromosome fusions in this species involved sex chromosomes. We found that certain ancestral squamate chromosomes, such as the homologue of the Anolis carolinensis chromosome 11, are repeatedly involved in sex chromosome formation in different species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, and to study sex chromosome synapsis and recombination in meiosis, we performed synaptonemal complex analysis in this species and in S. variabilis, a related species with 2n=34. We found that in the species studied the recombination patterns correlate more with phylogeny than with the structure of the karyotype. The sex chromosomes had two distal pseudoautosomal regions and a medial differentiated region.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3