Author:
Belbellaa Brahim,Reutenauer Laurence,Messaddeq Nadia,Monassier Laurent,Puccio Hélène
Abstract
ABSTRACTFriedreich ataxia (FA) is currently an incurable inherited mitochondrial disease caused by reduced levels of frataxin (FXN). Cardiac dysfunction is the main cause of premature death in FA. AAV-mediated gene therapy constitutes a promising approach for FA, as demonstrated in cardiac and neurological mouse models. While the minimal therapeutic level of FXN protein to be restored and biodistribution have recently been defined for the heart, it is unclear if FXN overexpression could be harmful. Indeed, depending on the vector delivery route and dose administrated, the resulting FXN protein level could reach very high levels in the heart, cerebellum, or in off-target organs such as the liver. The present study demonstrates safety of FXN cardiac overexpression up to 9-fold the normal endogenous level, but significant toxicity to the mitochondria and heart above 20-fold. We show gradual severity with increasing FXN overexpression, ranging from subclinical cardiotoxicity to left ventricle dysfunction. This appears to be driven by impairment of mitochondria respiratory chain, ultrastructure and homeostasis, which lead to myofilaments alteration, cell death and fibrosis. Overall, this study underlines the need, during the development of gene therapy approaches, to consider appropriately vector potency, long term safety and biomarkers to monitor such events.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献