Combinatorial metabolic engineering platform enabling stable overproduction of lycopene from carbon dioxide by cyanobacteria

Author:

Taylor George M.ORCID,Heap John T.ORCID

Abstract

AbstractCyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms representing ideal biocatalysts for CO2 capture and conversion, in principle. In practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Laboratory evolution suppressed variants causing metabolic burden in Synechocystis, leading to expected genetic instability. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random overproduced the valuable terpenoid lycopene from atmospheric CO2 over many generations, apparently overcoming the trade-off between stability and productivity. This first large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3