Abstract
ABSTRACTEfficient mammalian autophagosome biogenesis requires coordinated input from other cellular endomembrane compartments. Such coordination includes the stimulated trafficking to autophagosome assembly sites of the essential autophagy proteins, ATG9 and ATG16L1, via distinct endosomal compartments. Protein trafficking within the endocytic network is directed by a conserved family of sorting nexins (SNXs), with previous studies implicating SNX18 (an SH3 domain-type SNX-BAR protein) in the mobilisation of ATG9A and ATG16L1 from recycling endosomes during autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that a second mammalian SNX-BAR, SNX4, is needed for efficient LC3 lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and heterodimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30, and that these associate with tubulovesicular endocytic membranes at steady state. Detailed image-based analysis during the early stages of autophagosome assembly reveal that SNX4:SNX7 is the autophagy-specific heterodimeric SNX-BAR complex, required for efficient recruitment/retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially co-localises with juxtanuclear ATG9A-positive membranes, with our data linking the SNX4 autophagy defect to the mis-trafficking and/or retention of ATG9A in the Golgi region. Together, our findings show that the SNX4:SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites.SUMMARY STATEMENTA heterodimeric SNX4:SNX7 SNX-BAR complex regulates mammalian autophagosome assembly through the control of ATG9 trafficking.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献