Specialization of mid-tier stages of dorsal and ventral pathways in stereoscopic processing

Author:

Yoshioka Toshihide W.ORCID,Doi TakahiroORCID,Abdolrahmani MohammadORCID,Fujita IchiroORCID

Abstract

AbstractThe division of labor between the dorsal and ventral visual pathways is an influential model of parallel information processing in the cerebral cortex. However, direct comparison of the two pathways at the single-neuron resolution has been scarce. Here we compare how MT and V4, mid-tier areas of the two pathways in the monkey, process binocular disparity, a powerful cue for depth perception and visually guided actions. We report a novel tradeoff where MT neurons transmit disparity signals quickly and robustly, whereas V4 neurons markedly transform the nature of the signals with extra time to solve the stereo correspondence problem. Therefore, signaling speed and robustness are traded for computational complexity. The key factor in this tradeoff was the shape of disparity tuning: V4 neurons had more even-symmetric tuning than MT neurons. Moreover, this correlation between tuning shape and signal transformation was present across individual neurons within both MT and V4. Overall, our results reveal both distinct signaling advantages and common tuning-curve features of the dorsal and ventral pathways in stereoscopic processing.

Publisher

Cold Spring Harbor Laboratory

Reference91 articles.

1. Pooled, but not single-neuron, responses in macaque V4 represent a solution to the stereo correspondence problem

2. Bayesian microsaccade detection

3. Three-dimensional Epigenome Statistical Model: Genome-wide Chromatin Looping Prediction

4. Some informational aspects of visual perception.

5. Barlow, H.B . (1961). Possible principles underlying the transformations of sensory messages. In Sensory Communication (ed. Rosenblith, W.A. ) pp. 217–234. MIT Press, Cambridge, MA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3