Development and Evaluation of an AI System for COVID-19 Diagnosis

Author:

Jin Cheng,Chen Weixiang,Cao Yukun,Xu Zhanwei,Zhang Xin,Deng Lei,Zheng Chuansheng,Zhou Jie,Shi Heshui,Feng Jianjiang

Abstract

AbstractEarly detection of COVID-19 based on chest CT will enable timely treatment of patients and help control the spread of the disease. With rapid spreading of COVID-19 in many countries, however, CT volumes of suspicious patients are increasing at a speed much faster than the availability of human experts. Here, we propose an artificial intelligence (AI) system for fast COVID-19 diagnosis with an accuracy comparable to experienced radiologists. A large dataset was constructed by collecting 970 CT volumes of 496 patients with confirmed COVID-19 and 260 negative cases from three hospitals in Wuhan, China, and 1,125 negative cases from two publicly available chest CT datasets. Trained using only 312 cases, our diagnosis system, which is based on deep convolutional neural network, is able to achieve an accuracy of 94.98%, an area under the receiver operating characteristic curve (AUC) of 97.91%, a sensitivity of 94.06%, and a specificity of 95.47% on an independent external verification dataset of 1,255 cases. In a reader study involving five radiologists, only one radiologist is slightly more accurate than the AI system. The AI system is two orders of magnitude faster than radiologists and the code is available at https://github.com/ChenWWWeixiang/diagnosis_covid19.

Publisher

Cold Spring Harbor Laboratory

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Whale Optimization and Canonical Correlation based COVID-19 Classification Approach;Multimedia Tools and Applications;2024-01-25

2. Joint Multi-view Feature Network for Automatic Diagnosis of Pneumonia with CT Images;Lecture Notes in Electrical Engineering;2024

3. Intelligent application for COVID-19 diagnosis using CT scan;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

4. A Study of COVID-19 and Its Detection Methods Using Imaging Techniques;Futuristic Communication and Network Technologies;2023

5. Performance Evaluation of Diagnostic and Classification Systems Using Deep Learning on Apache Spark;Lecture Notes in Mechanical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3