A family of viral satellites manipulates invading virus gene expression and affects cholera toxin mobilization

Author:

Barth Zachary K,Netter Zoe,Angermeyer Angus,Bhardwaj Pooja,Seed Kimberley DORCID

Abstract

AbstractMany viruses possess temporally unfolding gene expression patterns aimed at subverting host defenses, commandeering host metabolism, and ultimately producing a large number of progeny virions. High throughput -omics tools, such as RNA-seq, have dramatically enhanced resolution of expression patterns during infection. Less studied have been viral satellites, mobile genomes that parasitize viruses and have far reaching effects on host-cell fitness. By performing RNA-seq on infection time courses, we have obtained the first time-resolved transcriptomes for bacteriophage satellites during lytic infection. Specifically, we have acquired transcriptomes for the lytic Vibrio cholerae phage ICP1 and all five known variants of ICP1’s parasite, the Phage Inducible Chromosomal Island-Like Elements (PLEs). PLEs rely on ICP1 for both DNA replication and mobilization, and abolish production of ICP1 progeny in infected cells. We investigated PLEs impact on ICP1 gene expression and found that PLEs did not broadly restrict or reduce ICP1 gene expression. A major exception occurred in ICP1’s capsid morphogenesis operon, which was downregulated by each of the PLE variants. This transcriptional manipulation, conserved among PLEs, has also evolved independently in at least one other phage satellite, suggesting that viral satellites may be under strong selective pressure to reduce the capsid expression of their larger host viruses. Surprisingly, PLEs were also found to alter the gene expression of CTXϕ, the integrative phage that encodes cholera toxin and is necessary for virulence of toxigenic V. cholerae. One PLE, PLE1, upregulated CTXϕ genes involved in replication and integration, and boosted CTXϕ mobility following induction of the SOS response. Our data show that PLEs exhibit conserved manipulation of their host-phage’s gene expression, but divergent effects on CTXϕ, revealing that PLEs can influence both their hosts’ resistance to phage and the mobility of virulence encoding elements.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3