Calcium-Binding Proteins are Altered in the Cerebellum in Schizophrenia

Author:

Vidal-Domènech Francisco,Riquelme Gemma,Pinacho Raquel,Rodriguez-Mias Ricard,Vera América,Monje Alfonso,Ferrer Isidre,Callado Luis F.,Meana J. Javier,Villén Judit,Ramos BelénORCID

Abstract

AbstractAlterations in the cortico-cerebellar-thalamic-cortical circuit might underlie the diversity of symptoms in schizophrenia. However, molecular changes in cerebellar neuronal circuits, part of this network, have not yet been fully determined. Using LC-MS/MS, we screened altered candidates in pooled grey matter of cerebellum from schizophrenia subjects who committed suicide (n=4) and healthy individuals (n=4). Further validation by immunoblotting of three selected candidates was performed in two cohorts comprising schizophrenia (n=20), non-schizophrenia suicide (n=6) and healthy controls (n=21). We found 99 significantly altered proteins, 31 of them previously reported in other brain areas by proteomic studies. Transport function was the most enriched category, while cell communication was the most prevalent function. For validation, we selected the vacuolar proton pump subunit 1 (VPP1), from transport, and two EF-hand calcium-binding proteins, calmodulin and parvalbumin from cell communication. All candidates showed significant changes in schizophrenia (n=7) compared to controls (n=7). VPP1 was altered in the non-schizophrenia suicide group and increased levels of parvalbumin were linked to antipsychotics. Further validation in an independent cohort of non-suicidal chronic schizophrenia subjects (n=13) and non-psychiatric controls (n=14) showed that parvalbumin was increased while calmodulin was decrease in schizophrenia. Our findings provide evidence of an dysregulation of calcium-binding proteins in the cerebellum in schizophrenia, suggesting an impact on normal calcium-dependent synaptic functioning of cerebellar circuits. Our study also links VPP1 to suicide behaviours, suggesting a possible impairment in vesicle neurotransmitter refilling and release in these phenotypes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3