Abstract
AbstractMany mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite’s extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.25 ± 0.39 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is remarkably higher (range: 10.1%–12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.Significance StatementIn natural settings the female Anopheles gambiae mosquito, the major malaria vector, blood feeds multiple times in her lifespan. Here we demonstrate that an additional blood feed accelerates the growth of Plasmodium falciparum malaria parasites in this mosquito. Incorporating these data into a mathematical model across sub-Saharan Africa reveals that malaria transmission potential is likely to be substantially higher than previously thought, making disease elimination more difficult. Additionally, we show that control strategies that manipulate mosquito reproduction with the aim of suppressing Anopheles populations may inadvertently favor malaria transmission. Our data also suggest that parasites can be transmitted by younger mosquitoes, which are less susceptible to insecticide killing, with negative implications for the success of insecticide-based strategies.
Publisher
Cold Spring Harbor Laboratory
Reference54 articles.
1. WHO (2019) World Malaria Report. (World Health Organization, Geneva).
2. Averting a malaria disaster: will insecticide resistance derail malaria control?
3. Some Quantitative Studies in Epidemiology;Nature,1911
4. Epidemiological basis of malaria control;Bull World Health Organ,1956
5. Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献