Deep Learning-Based Recognizing COVID-19 and other Common Infectious Diseases of the Lung by Chest CT Scan Images

Author:

Fu Min,Yi Shuang-Lian,Zeng Yuanfeng,Ye Feng,Li Yuxuan,Dong Xuan,Ren Yan-Dan,Luo Linkai,Pan Jin-Shui,Zhang Qi

Abstract

AbstractPurposeCOVID-19 has become global threaten. CT acts as an important method of diagnosis. However, human–based interpretation of CT imaging is time consuming. More than that, substantial inter-observer-variation cannot be ignored. We aim at developing a diagnostic tool for artificial intelligence (AI)–based classification of CT images for recognizing COVID-19 and other common infectious diseases of the lung.Experimental DesignIn this study, images were retrospectively collected and prospectively analyzed using machine learning. CT scan images of the lung that show or do not show COVID-19 were used to train and validate a classification framework based on convolutional neural network. Five conditions including COVID-19 pneumonia, non-COVID-19 viral pneumonia, bacterial pneumonia, pulmonary tuberculosis, and normal lung were evaluated. Training and validation set of images were collected from Wuhan Jin Yin-Tan Hospital whereas test set of images were collected from Zhongshan Hospital Xiamen University and the fifth Hospital of Wuhan.ResultsAccuracy, sensitivity, and specificity of the AI framework were reported. For test dataset, accuracies for recognizing normal lung, COVID-19 pneumonia, non-COVID-19 viral pneumonia, bacterial pneumonia, and pulmonary tuberculosis were 99.4%, 98.8%, 98.5%, 98.3%, and 98.6%, respectively. For the test dataset, accuracy, sensitivity, specificity, PPV, and NPV of recognizing COVID-19 were 98.8%, 98.2%, 98.9%, 94.5%, and 99.7%, respectively.ConclusionsThe performance of the proposed AI framework has excellent performance of recognizing COVID-19 and other common infectious diseases of the lung, which also has balanced sensitivity and specificity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3