Abstract
AbstractMotivationIdentification of functional sites in proteins is essential for functional characterisation, variant interpretation and drug design. Several methods are available for predicting either a generic functional site, or specific types of functional site. Here, we present FunSite, a machine learning predictor that identifies catalytic, ligand-binding and protein-protein interaction functional sites using features derived from protein sequence and structure, and evolutionary data from CATH functional families (FunFams).ResultsFunSite’s prediction performance was rigorously benchmarked using cross-validation and a holdout dataset. FunSite outperformed all publicly-available functional site prediction methods. We show that conserved residues in FunFams are enriched in functional sites. We found FunSite’s performance depends greatly on the quality of functional site annotations and the information content of FunFams in the training data. Finally, we analyse which structural and evolutionary features are most predictive for functional sites.AvailabilityThe datasets and prediction models are available on request.Contactc.orengo@ucl.ac.ukSupplementary informationSupplementary data are available at Bioinformatics online.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献