The components of directional and disruptive selection in heterogeneous group-structured populations

Author:

Ohtsuki Hisashi,Rueffler Claus,Wakano Joe Yuichiro,Parvinen Kalle,Lehmann Laurent

Abstract

AbstractWe derive how directional and disruptive selection operate on scalar traits in a heterogeneous group-structured population for a general class of models. In particular, we assume that each group in the population can be in one of a finite number of states, where states can affect group size and/or other environmental variables, at a given time. Using up to second-order perturbation expansions of the invasion fitness of a mutant allele, we derive expressions for the directional and disruptive selection coefficients, which are sufficient to classify the singular strategies of adaptive dynamics. These expressions include first- and second-order perturbations of individual fitness (expected number of settled offspring produced by an individual, possibly including self through survival); the first-order perturbation of the stationary distribution of mutants (derived here explicitly for the first time); the first-order perturbation of pairwise relatedness; and reproductive values, pairwise and three-way relatedness, and stationary distribution of mutants, each evaluated under neutrality. We introduce the concept of individual k-fitness (defined as the expected number of settled offspring of an individual for which k − 1 randomly chosen neighbors are lineage members) and show its usefulness for calculating relatedness and its perturbation. We then demonstrate that the directional and disruptive selection coefficients can be expressed in terms individual k-fitnesses with k = 1, 2, 3 only. This representation has two important benefits. First, it allows for a significant reduction in the dimensions of the system of equations describing the mutant dynamics that needs to be solved to evaluate explicitly the two selection coefficients. Second, it leads to a biologically meaningful interpretation of their components. As an application of our methodology, we analyze directional and disruptive selection in a lottery model with either hard or soft selection and show that many previous results about selection in group-structured populations can be reproduced as special cases of our model.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Analysis of disruptive selection in subdivided populations;BMC Evolutionary Biology,2003

2. Sex ratio theory in geographically structured populations

3. Caswell, H. 2001. Matrix Population Models. 2nd ed. Sinauer.

4. Models for spatially distributed populations: The effect of within-patch variability

5. Population structure inhibits evolutionary diversification under competition for resources;Genetica,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3