The Demographic History of Micro-endemics: Have Rare Species Always Been Rare?

Author:

Helmstetter Andrew J.,Cable Stuart,Rakotonasolo Franck,Rabarijaona Romer,Rakotoarinivo Mijoro,Eiserhardt Wolf L.,Baker William J.,Papadopulos Alexander S.T.

Abstract

AbstractExtinction has increased as human activities impact ecosystems. Conservation assessments for the IUCN red list are a fundamental tool in aiding the prevention of further extinction, yet, relatively few species have been thoroughly assessed. To increase the efficiency of assessments, novel approaches are needed to highlight threatened species that are currently data deficient. Many Madagascan plant species currently have extremely narrow ranges, but this may not have always been the case. To assess this, we used high-throughput DNA sequencing for 2-5 individuals of each species - reflecting the paucity of samples available for rare species. We estimated effective population size (Ne) for each species and compared this to census population (Nc) sizes when known. In each case, Ne was an order of magnitude larger than Nc – a signature of rapid, recent population decline. We then estimated the demographic history of each species, tracking changes in Ne over time. Five out of ten species displayed significant population declines towards the present (68–90% decreases). Our results for palm trees indicate that it is possible to predict extinction risk, particularly in the most threatened species. We performed simulations to show that our approach has the power to detect population decline during the Anthropocene, but performs less well when less data is used. Similar declines to those in palms were observed in data deficient species or those assessed as of least concern. These analyses reveal that Madagascar’s narrow endemics were not always rare, having experienced rapid decline in their recent history. Our approach offers the opportunity to target species in need of conservation assessment with little prior information, particularly in regions where human modification of the environment has been rapid.SummaryCurrent IUCN conservation assessment methods are reliant on observed declines in species population and range sizes over the last one hundred years, but for the majority of species this information is not available. We used a population genetic approach to reveal historical demographic decline in the rare endemic flora of Madagascar. These results show that it is possible to predict extinction risk from demographic patterns inferred from genetic data and that destructive human influence is likely to have resulted in the very high frequency of narrow endemics present on the island. Our approach will act as an important tool for rapidly assessing the threatened status of poorly known species in need of further study and conservation, particularly for tropical flora and fauna.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3