Modeling of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Proteins by Machine Learning and Physics-Based Refinement

Author:

Heo LimORCID,Feig MichaelORCID

Abstract

ABSTRACTProtein structures are crucial for understanding their biological activities. Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need to understand the biological behavior of the virus and provide a basis for developing effective therapies. Since the proteome of the virus was determined, some of the protein structures could be determined experimentally, and others were predicted via template-based modeling approaches. However, tertiary structures for several proteins are still not available from experiment nor they could be accurately predicted by template-based modeling because of lack of close homolog structures. Previous efforts to predict structures for these proteins include efforts by DeepMind and the Zhang group via machine learning-based structure prediction methods, i.e. AlphaFold and C-I-TASSER. However, the predicted models vary greatly and have not yet been subjected to refinement. Here, we are reporting new predictions from our in-house structure prediction pipeline. The pipeline takes advantage of inter-residue contact predictions from trRosetta, a machine learning-based method. The predicted models were further improved by applying molecular dynamics simulation-based refinement. We also took the AlphaFold models and refined them by applying the same refinement method. Models based on our structure prediction pipeline and the refined AlphaFold models were analyzed and compared with the C-I-TASSER models. All of our models are available at https://github.com/feiglab/sars-cov-2-proteins.

Publisher

Cold Spring Harbor Laboratory

Reference13 articles.

1. A new coronavirus associated with human respiratory disease in China;Nature,2020

2. SWISS-MODEL: homology modelling of protein structures and complexes

3. Improved protein structure prediction using potentials from deep learning;Nature,2020

4. Jumper J , Tunyasuvunakool K , Kohli P , Hassabis D , and the AlphaFold team. Computational predictions of protein structures associated with COVID-19. DeepMind website, March 5, 2020. https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19.

5. Zhang C , Zheng W , Huang X , Bell EW , Zhou X , Zhang Y . Protein Structure and Sequence Reanalysis of 2019-nCoV Genome Refutes Snakes as Its Intermediate Host and the Unique Similarity between Its Spike Protein Insertions and HIV-1. J Proteome Res 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3