Abstract
ABSTRACTProtein structures are crucial for understanding their biological activities. Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need to understand the biological behavior of the virus and provide a basis for developing effective therapies. Since the proteome of the virus was determined, some of the protein structures could be determined experimentally, and others were predicted via template-based modeling approaches. However, tertiary structures for several proteins are still not available from experiment nor they could be accurately predicted by template-based modeling because of lack of close homolog structures. Previous efforts to predict structures for these proteins include efforts by DeepMind and the Zhang group via machine learning-based structure prediction methods, i.e. AlphaFold and C-I-TASSER. However, the predicted models vary greatly and have not yet been subjected to refinement. Here, we are reporting new predictions from our in-house structure prediction pipeline. The pipeline takes advantage of inter-residue contact predictions from trRosetta, a machine learning-based method. The predicted models were further improved by applying molecular dynamics simulation-based refinement. We also took the AlphaFold models and refined them by applying the same refinement method. Models based on our structure prediction pipeline and the refined AlphaFold models were analyzed and compared with the C-I-TASSER models. All of our models are available at https://github.com/feiglab/sars-cov-2-proteins.
Publisher
Cold Spring Harbor Laboratory
Reference13 articles.
1. A new coronavirus associated with human respiratory disease in China;Nature,2020
2. SWISS-MODEL: homology modelling of protein structures and complexes
3. Improved protein structure prediction using potentials from deep learning;Nature,2020
4. Jumper J , Tunyasuvunakool K , Kohli P , Hassabis D , and the AlphaFold team. Computational predictions of protein structures associated with COVID-19. DeepMind website, March 5, 2020. https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19.
5. Zhang C , Zheng W , Huang X , Bell EW , Zhou X , Zhang Y . Protein Structure and Sequence Reanalysis of 2019-nCoV Genome Refutes Snakes as Its Intermediate Host and the Unique Similarity between Its Spike Protein Insertions and HIV-1. J Proteome Res 2020.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献